If it's not what You are looking for type in the equation solver your own equation and let us solve it.
1/3x^2+4=23
We move all terms to the left:
1/3x^2+4-(23)=0
Domain of the equation: 3x^2!=0We add all the numbers together, and all the variables
x^2!=0/3
x^2!=√0
x!=0
x∈R
1/3x^2-19=0
We multiply all the terms by the denominator
-19*3x^2+1=0
Wy multiply elements
-57x^2+1=0
a = -57; b = 0; c = +1;
Δ = b2-4ac
Δ = 02-4·(-57)·1
Δ = 228
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{228}=\sqrt{4*57}=\sqrt{4}*\sqrt{57}=2\sqrt{57}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{57}}{2*-57}=\frac{0-2\sqrt{57}}{-114} =-\frac{2\sqrt{57}}{-114} =-\frac{\sqrt{57}}{-57} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{57}}{2*-57}=\frac{0+2\sqrt{57}}{-114} =\frac{2\sqrt{57}}{-114} =\frac{\sqrt{57}}{-57} $
| 63-n=16 | | -9=n+2 | | 9n+1=4n+18 | | 00.7a=49 | | (7x+9)+(12x+12)=180 | | x+.5x=32 | | -3(2x—3)=-6x+9 | | 5x=3x10 | | 5+91x=39+9 | | -4.8+4.5v=-4.1 | | 60.000=18.5a+4.5 | | 6g+16=2g+48 | | 10x-8/3-44x=6x | | 5+y/18.75=8 | | 7.2x-7.1=-5.3 | | -48-6x=42 | | 5x-x=-4.5-x | | 44=-5x+9 | | 52=-38+10x | | 7x-5.4=12.1 | | -267=-113-11x | | 6m+5=29m= | | x+64^2=324 | | -11x-36=96 | | 4x+2(x–3)=6x–6 | | 18x-2-13x-1=2 | | 37=6x-77 | | 3/8n=1=-25 | | C=13+0.09k | | 1/2(6g+3)=12 | | –4r=2r+6 | | 3/n=11/12 |